2023 SNU Data Science Invited Seminar - I

Industrial AI Technology and Software Platform for Manufacturing

Sunghee Yun
Chief Applied Scientist & Head of Global R&D @ Gauss Labs

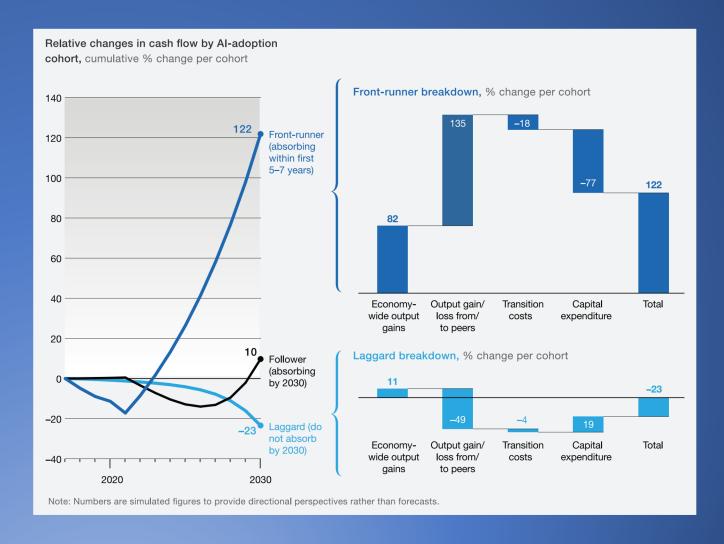
Today

1 Why Manufacturing AI?

- 2 Computer vision ML for manufacturing
- 3 Time-series ML for manufacturing
- 4 Difficulties with time-series ML in manufacturing

5 Gauss Labs success story: Virtual Metrology

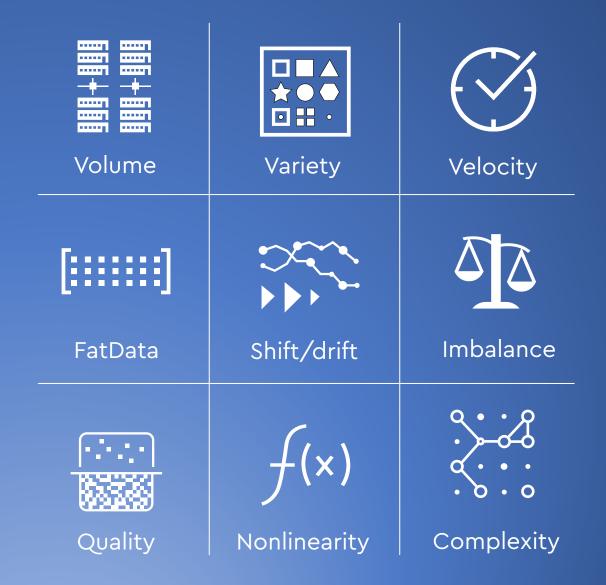
Fast AI adoption WILL create way larger economic gains



Data Characteristics

Virtuous (or Vicious) Cycle

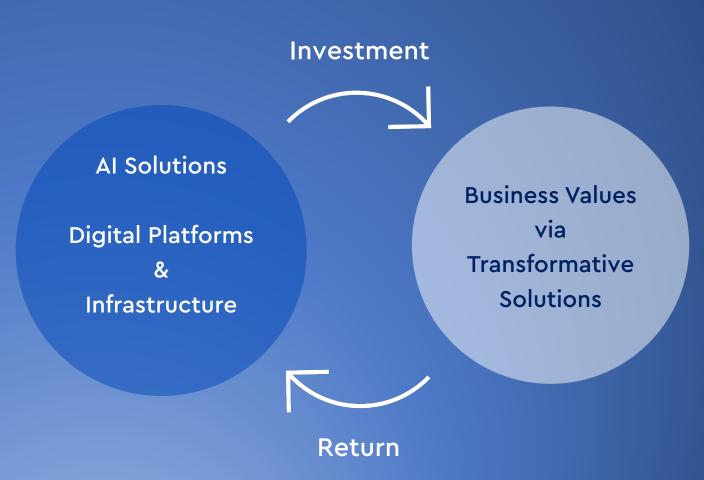
Data-centric Al



Data Characteristics

Virtuous (or Vicious) Cycle

Data-centric Al



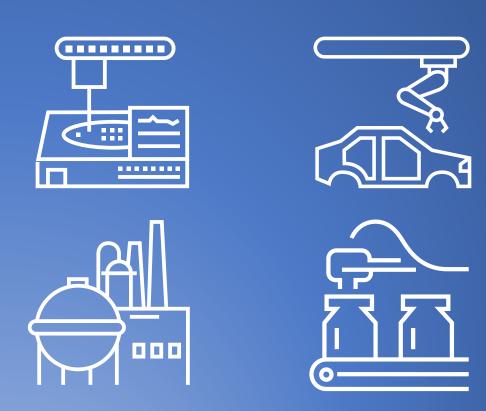
"We need 1,000 models for 1,000 problems" - Andrew Ng

Data-centric Al
Discipline of systematically engineering the data used to
build an Al system

Data Characteristics

Virtuous (or Vicious) Cycle

Data-centric Al



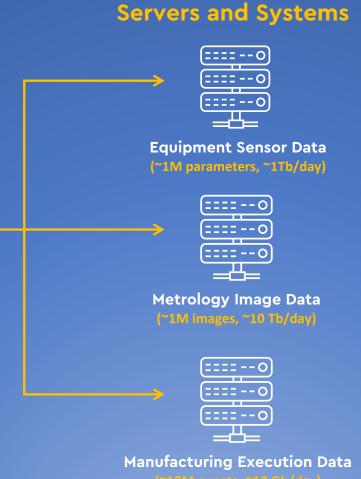
Every company or sector has its own problems

Our initial focus for 10x changes

Semiconductor Fab

A modern mega fab has ...

- ~1,000 process equipement
- ~100 metrology equipment
- ~1,000 wafers per day, per equipment
- ~1,000 processes per wafer
- 3-6-month cycle time



Why Semiconductor?

Data availability from advanced digitalization

Diverse and sophisticated processes, ideal for expanding to new customers & sectors

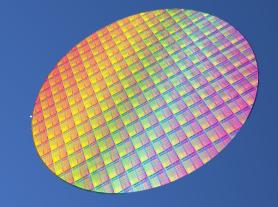
Huge impact even within the sector itself

Computer vision and time-series ML in Manufacturing

lots of image data to measure and inspect

Scanning electron microscope (SEM) images, transmission electron microscope (TEM) images, etc.

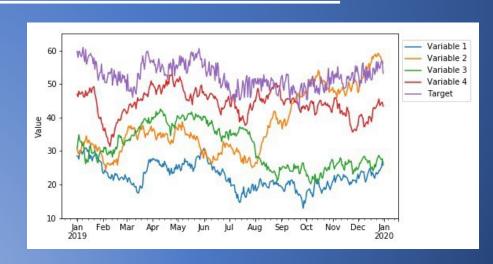
→ Image pattern classification, image anomaly detection, defect inspection, etc.



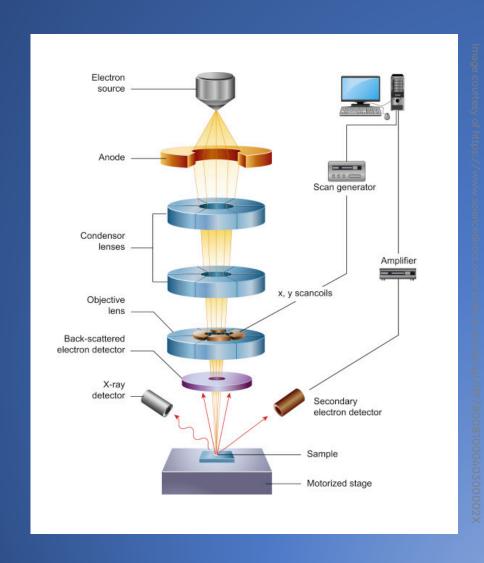
(almost) All the data coming from manufacturing are time-series data

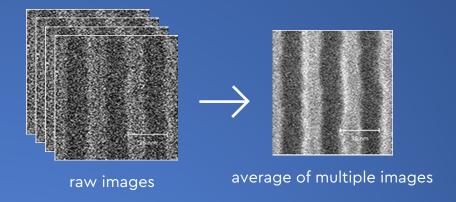
Equipment sensor data, process times, material measurement, etc.

→ time-series (TS) regression / prediction/estimation, TS anomaly detection, etc.



Scanning Electron Microscope





Shot Noise Image courtesy of https://en.wikipedia.org/wiki/Shot noise

Image restoration

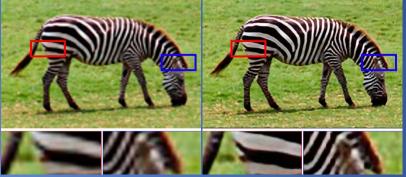
Inverse problem of image corruption

x = f(y) + n

- y: clean image
- x: corrupted image
- n: noise

f(·) and corresponding solutions

- Noising: Identity function → Denoising
- Downsampling → Super-resolution
- Missing pixels → Inpainting



Supervised image denoising

However, it is not possible to acquire ground-truth images from SEM device, in practice.

Blind denoising without ground truth

If the mean of the noise is zero, the average of the gradients that model takes is same with the gradient to the ground truth

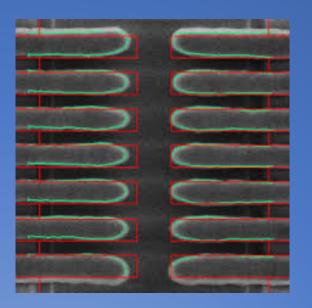
Metrology based on segmentation and pattern recognition

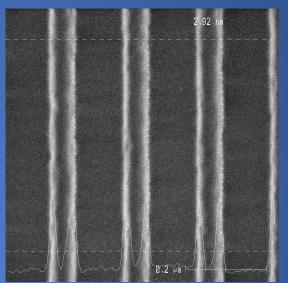
Investment

Automatic measurement of critical dimensions

Approaches

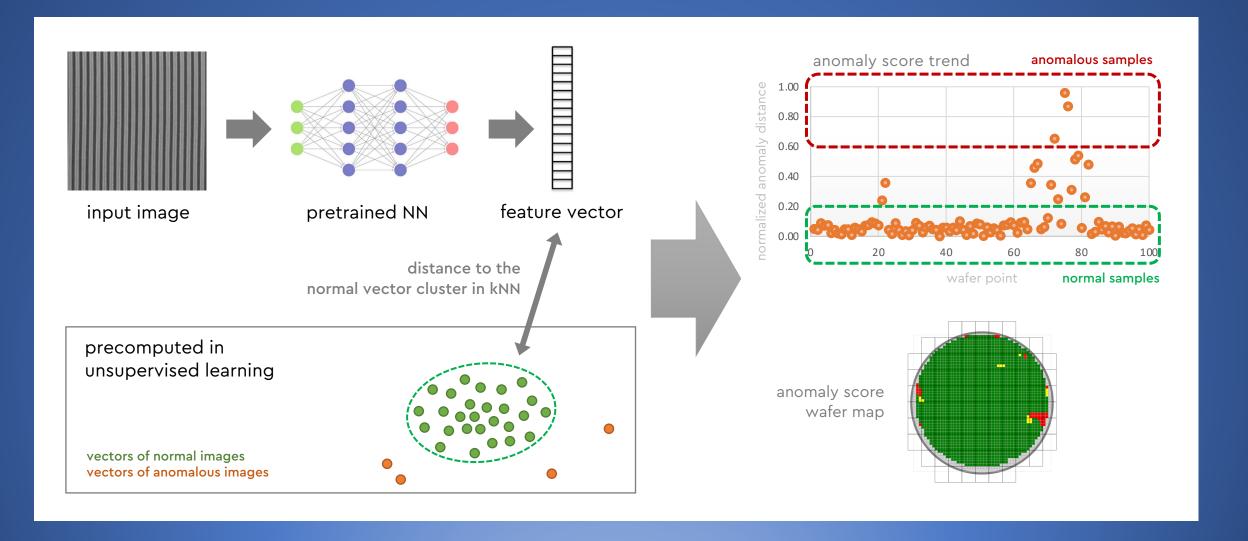
- Unsupervised texture segmentation
- Repetitive pattern recognition



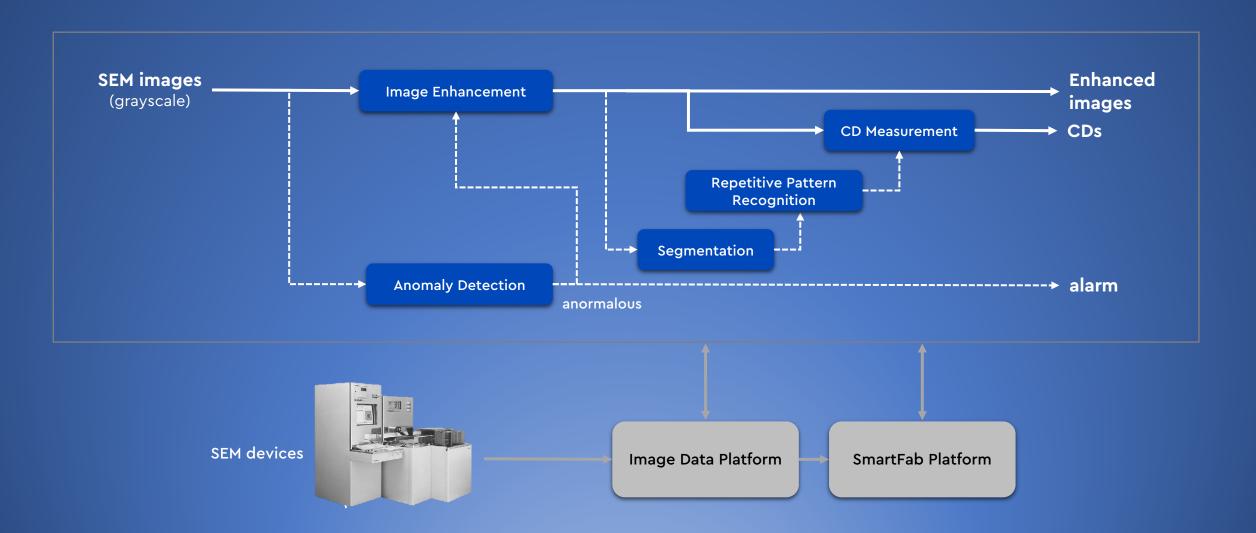


<0.1 nm measurement precision guaranteed

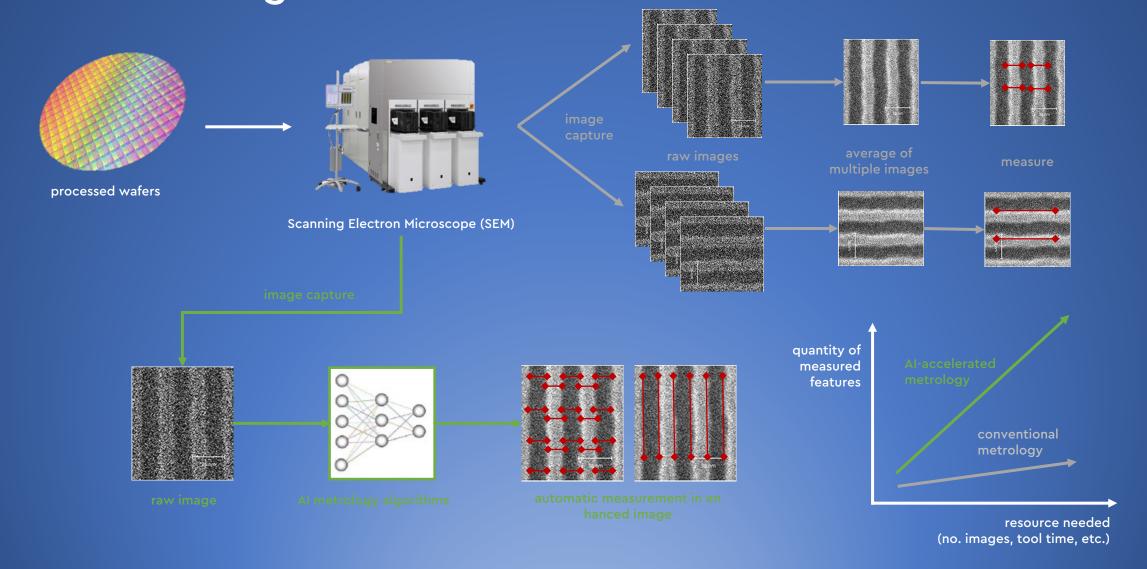
Anomaly detection in unsupervised learning



Al-accelerated metrology system



Automatic measurement for semiconductor manufacturing

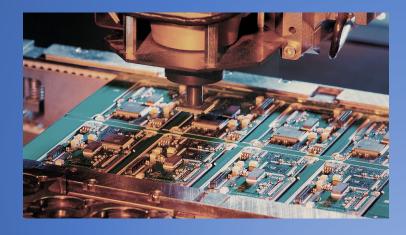


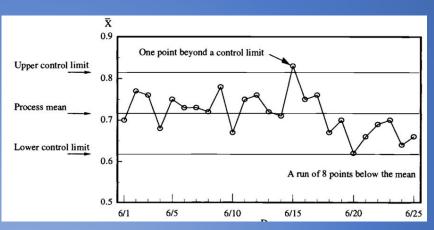
Time-series ML for manufacturing

Why time-series ML?

manufacturing application is about one of the followings:

- prediction of time-series values virtual metrology, yield prediction
- classification of time-series values equipment anomaly alarm generation
- anomaly detection on time-series data root cause analysis, yield analysis





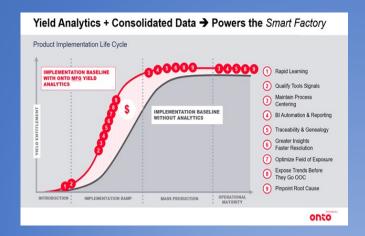
Time-series regression/prediction/estimation

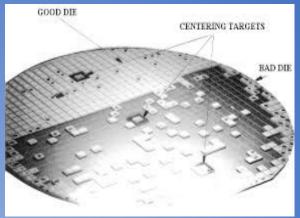
virtual metrology

- measure unmeasured processed materials using equipment sensor signals
- save investment on measurement equipment, downstream applications such as process control, statistical process control, yield improvement

yield prediction

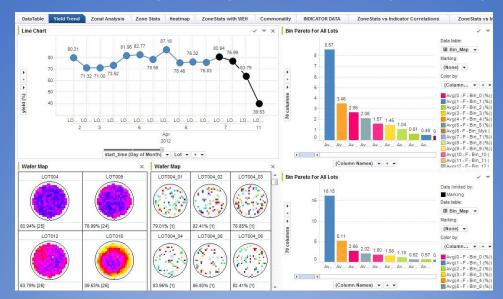
- predict yield (# working dies / # total dies
- better product quality and larger profit, business impact





Root cause analysis using time-series anomaly detection

- · equipment alarm root cause analysis
 - when alarm goes off, find responsible equipment and root causes
 - reduce equipment downtime, make process engineers' lives easier
- yield analysis
 - find responsible equipment and root causes for yield drop
 - a few % yield improvement brings profit increase of tens of millions of dollars!



Difficulties with Time-series ML in manufacturing

Data challenges

covariate shift & concept drift

```
p(x(t_k), x(t_{k-1}), ...) changes over time p(y(t_k) | x(t_k), x(t_{k-1}), ..., y(t_{k-1}), y(t_{k-2}), ...) changes over time
```

- fat data, i.e., # features way larger than # data
- poor data quality; missing values, anomalies, wrong formats
- huge volume of data to process
- multi-modality different types of data

Domain knowledge and fully home-grown algorithms

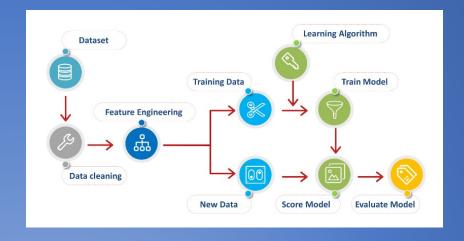
in most cases, domain knowledge is critical!

close collaboration with customers required

Antireflective Coating Carbon Hard Mask Wafer Clean Pad Oxide and Carbon Hard Mask and Antireflective Nitride Deposition Photoresist and Pre-Bake Open Antireflective Develop and Hard Exposure and Etch Trench then Remove Hardmask Coating and Hard Mask; Post-Exposure Bake Strip Photoresist and Antireflective Coating

off-the-shelf algorithms not working!

developing fully customized algorithms needed



Virtual Metrology (VM)

What is VM?

in many cases, we cannot measure all processed materials

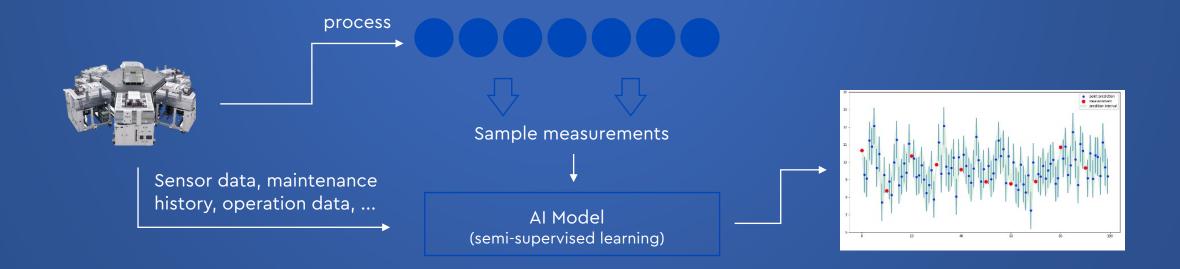
- measurement equipment is too expensive
- measuring every materials makes production slow inducing low throughput

thus, we do sampling (with very low sampling rate)

• in semiconductor manufacturing line, average sampling rate is less than 5%

PROBLEM

- predict the measurement of unmeasured material using indirect signals
- sensor data, maintenance history, operation data, . . .



Business Impact made by VM

To the best of our knowledge

 no organization has even been successful with VM

Gauss Labs VM

- uses online learning to cope with data drift/shift
- RMSE comparable to measurement equipment precision
- also predicts uncertainty of predictions - providing prediction reliability information

VM implications

- measuring ALL wafers –
 equivalent to investing on
 100x measurement equipment
- enables optimal re-allocation of limited measurement resources

Conclusion

supervised and unsupervised ML everywhere in industrial AI applications lots of challenges

 data challenge, domain knowledge required, need for customizing algorithms huge changes potentially made via various applications

Impacts

- Tens of Millions of dollars by 1% yield increase
- 100x measurement equipment save by VM